Instability of a Mixed Layer Model and the Generation of Near-Inertial Motion. Part I: Constant Mixed Layer Depth

1988 ◽  
Vol 18 (7) ◽  
pp. 963-976
Author(s):  
John Kroll
2004 ◽  
Vol 61 (21) ◽  
pp. 2528-2543 ◽  
Author(s):  
Glenn M. Auslander ◽  
Peter R. Bannon

Abstract This study examines the diurnal response of a mixed-layer model of the dryline system to localized anomalies of surface heat flux, topography, mixed-layer depth, and inversion strength. The two-dimensional, mixed-layer model is used to simulate the dynamics of a cool, moist layer east of the dryline capped by an inversion under synoptically quiescent conditions. The modeled domain simulates the sloping topography of the U.S. Great Plains. The importance of this study can be related to dryline bulges that are areas with enhanced convergence that may trigger convection in suitable environmental conditions. All anomalies are represented by a Gaussian function in the horizontal whose amplitude, size, and orientation can be altered. A positive, surface-heat-flux anomaly produces increased mixing that creates a bulge toward the east, while a negative anomaly produces a westward bulge. Anomalies in topography show a similar trend in bulge direction with a peak giving an eastward bulge, and a valley giving a westward bulge. Anomalies in the initial mixed-layer depth yield an eastward bulge in the presence of a minimum and a westward bulge for a maximum. An anomaly in the initial inversion strength results in a westward bulge when the inversion is stronger, and an eastward bulge when the inversion is weak. The bulges observed in this study at 1800 LT ranged from 400 to 600 km along the dryline and from 25 to 80 km across the dryline. When the heating ceases at night, the entrainment and eastward movement of the line stops, and the line surges westward. This westward surge at night has little dependence on the type of anomaly applied. Whether a westward or eastward bulge was present at 1800 LT, the surge travels an equal distance toward the west. However, the inclusion of weak nocturnal friction reduces the westward surge by 100 to 200 km due to mechanical mixing of the very shallow leading edge of the surge. All model runs exhibit peaks in the mixed-layer depth along the dryline at 1800 LT caused by enhanced boundary layer convergence and entrainment of elevated mixed-layer air into the mixed layer. These peaks appear along the section of the dryline that is least parallel to the southerly flow. They vary in amplitude from 4 to 9 km depending on the amplitude of the anomaly. However, the surface-heat-flux anomalies generally result in peaks at the higher end of this interval. It is hypothesized that the formation of these peaks may be the trigger for deep convection along the dryline in the late afternoon.


2020 ◽  
Vol 50 (11) ◽  
pp. 3141-3156 ◽  
Author(s):  
Matthew H. Alford

AbstractThe wind generation of near-inertial waves is revisited through use of the Pollard–Rhines–Thompson theory, the Price–Weller–Pinkel (PWP) mixed layer model, and KPP simulations of resonant forcing by Crawford and Large. An Argo mixed layer climatology and 0.6° MERRA-2 reanalysis winds are used to compute global totals and explore hypotheses. First, slab models overestimate wind work by factors of 2–4 when the mixed layer is shallow relative to the scaling H* ≡ u*/(Nf)1/2, but are accurate for deeper mixed layers, giving overestimation of global totals by a factor of 1.23 ± 0.03 compared to PWP. Using wind stress relative to the ocean currents further reduces the wind work by an additional 13 ± 0.3%, for a global total wind work of 0.26 TW. Second, the potential energy increase ΔPE due to wind-driven mixed layer deepening is examined and compared to ΔPE computed from Argo and ERA-Interim heat flux climatology. Argo-derived ΔPE closely matches cooling, confirming that cooling sets the seasonal cycle of mixed layer depth and providing a new constraint on observational estimates of convective buoyancy flux at the mixed layer base. Locally and in fall, wind-driven deepening is comparable in importance to cooling. Globally, wind-driven ΔPE is about 11% of wind work, implying that >50% of wind work goes to turbulence and thus not into propagating inertial motions. The fraction into this “modified wind work” is imperfectly estimated in two ways, but we conclude that more research is needed into mixed layer and transition-layer physics. The power available for propagating near-inertial waves is therefore still uncertain, but appears lower than previously thought.


2012 ◽  
Vol 40 (3-4) ◽  
pp. 743-759 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
J. Vialard ◽  
C. de Boyer Montégut ◽  
P. M. Muraleedharan

Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. 592-598
Author(s):  
Jean-Baptiste Sallée ◽  
Violaine Pellichero ◽  
Camille Akhoudas ◽  
Etienne Pauthenet ◽  
Lucie Vignes ◽  
...  

2021 ◽  
Author(s):  
Sumit Dandapat ◽  
Arun Chakraborty ◽  
Jayanarayanan Kuttippurath ◽  
Chirantan Bhagawati ◽  
Radharani Sen

Sign in / Sign up

Export Citation Format

Share Document